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Overview

Timeline
• Project start date: 10/01/2019  
• Project end date: 09/30/2021
• Percent complete: 50%

Budget

Barriers
• Lack of fundamental knowledge about the 

impact of fuel kinetics on engine 
performance: 

– Dilute Gasoline Combustion, Clean Diesel 
Combustion, Low-Temperature & Multi-
mode Combustion

• Lack of efficient numerical optimization 
tools that enable true co-optimization of 
fuels and engines

Partners
• 9 national laboratories 
• 20+ universities
• External advisory board
• Many stakeholders

Task FY19 FY20
G.5.3 (a): LLNL: Statistical Reactor Engine Model 
for Multi-Mode delayed $150K

G.5.3 (b): LLNL: Statistical Reactor Engine Model 
for Advanced Compression Ignition (ACI) delayed $135K

G.2.21 Reinforcement learning for secondary fuel 
injection NA $205k

G.4.LBNL: Co-optimization software, multimode 
and CFD simulation optimization $75k $200k

Total project funding:           $75k     $690k
• DOE share: $690k
• Contractor share: $0k
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Relevance to USDRIVE ACEC Tech Team Roadmap* goals 

* https://www.energy.gov/sites/prod/files/2018/03/f49/ACEC_TT_Roadmap_2018.pdf

Two critical technologies on the USDRIVE ACEC Tech Team Roadmap* improve with the foundational 
research in this project (FT076):

1. Dilute Gasoline Combustion: “The three important combustion challenges are combustion robustness 
(stochastic, cycle-to-cycle combustion variations, partial burns and misfires), operating lean or EGR-diluted 
over a wide speed and load range, and controlling engine-out emissions of hydrocarbons (HCs) at light loads 
and nitrogen oxides (NOx) at heavy load.”

2. Clean Diesel Barriers and Strategy: “Improve the fundamental knowledge base for combustion and emissions 
processes and develop more robust, computationally efficient models for combustion system design for 
improved efficiency and reduced CO2emission. The knowledge base and modeling tools are required to design 
combustion systems for maximum fuel economy and minimum emissions.”

EGR= exhaust gas recirculation

https://
tps://www.energy.gov/sites/prod/files/2018/03/f49/ACEC_TT_Roadmap_2018.pdf
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Relevance to USDRIVE ACEC Tech Team Roadmap* goals  
and Co-optima goals

* https://www.energy.gov/sites/prod/files/2018/03/f49/ACEC_TT_Roadmap_2018.pdf

Dilute gasoline combustion and clean diesel 
Objectives: develop better modeling tools to better understand
• “the fundamentals of the effects of fuel injection, air motion (e.g., swirl, turbulence), 

thermodynamic state and composition, and combustion chamber geometry on fuel-air mixing, 
combustion and emission formation processes over the full load range”

• “fuel spray fundamentals and accurate fuel spray submodels. This includes […] fuel injector 
parameters (e.g., timing, spray- type, orifice geometry, injection pressure, single 
pulse versus multi-pulse, etc.,)” 

à G.2.21 (NREL), G.5.3 (LLNL)

Relevance to co-optima goals 
Numerical modeling (simulation and fuel search) requires true co-optimization capabilities
• Objective: develop numerical optimization methods that enable efficient parameter estimation 

and fuel search
• Impact: Enables validation of simulation models, accelerates identification of promising fuels 

that should be tried in the lab, enables co-optimization of fuels and engine operation 
à G.4.LBNL

https://
tps://www.energy.gov/sites/prod/files/2018/03/f49/ACEC_TT_Roadmap_2018.pdf
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Milestones
Date Description of Milestone or Go/No-Go Decision Status Lab

Jun
2019

• G.5.3: Report on the fuel blends found to have the most (and least) high efficiency operating range for a fixed 
RON and S based on the supercomputer search, with testable blend recommendations for engine validation. LLNL

Sep
2019

• G.4.LBNL(a): Scenario Co-optimizer: Implementation of surrogate models and development of new sampling 
strategy for globally robust predictions LBNL

Dec
2019

• G.4.LBNL(a): Development of statistical surrogate models and the fuel-engine Co-Optimization 
software suite for multi-mode data integration: (A) algorithm development LBNL

Mar
2020

• G.2.21 Assessment of reinforcement learning to optimize secondary fuel injection into 0D chemical 
reactor network 

• G.4.LBNL(a): Development of statistical surrogate models and the fuel-engine Co-Optimization 
software suite for multi-mode data integration: (B) Application to optimization of Zero-RK multi-mode 
engine model 

NREL

LBNL

Jun
2020

• G.5.3.LLNL(a): Summary report on the fuel blends found to have the greatest low-power operating 
range for fixed RON and S based on supercomputer search, with blend recommendations for engine 
validation.

• G.4.LBNL(b): Predictive data-informed surrogate models to guide targeted CFD simulations

à4Q20

on-track 

LLNL

LBNL

Sep
2020

• G.2.21 Demonstration of controller coupled to multi-dimensional combustion calculation
• G.5.3.LLNL(b): Summary report on the fuel blends found to have the most ACI operating range for a 

fixed RON and S based on the supercomputer search, with blend recommendations for engine 
validation.

• G.4.LBNL(a): Development of statistical surrogate models and the fuel-engine Co-Optimization software suite 
for multi-mode data integration: (C) Identification of trade-offs between boosted SI and part-load fuel efficiency

on-track

on-track

on-track

NREL

LLNL

LBNL

bold = focus of the presentation
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Overall Approach - Accelerate hypothesis testing using accurate fuel 
chemistry models for broad blend explorations

Ex. Multi-mode fuel 
property exploration

see Sjoberg’s talk 
FT070

Task G.5.3 (LLNL): 
simulations

Task G.2.21 
(NREL): Engine 
operation thru 
Reinforcement 

Learning

Task G.4.LBNL: 
Efficient co-
optimization

Is there another dimension 
than just octane index 

affecting Spark-Assisted 
Compression Ignition 
(SACI) load range?
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Approach Task 5.3 - Extend Zero-RK engine models to capture charge 
stratification (T, f) with full gasoline chemistry and HPF palette

Takeaways: To estimate the co-optimization potential, virtual fuel searches need models 
that can approximate the fluid dynamic phenomena in an engine impacting the fuel-air 
mixture evolution. 

critical (T, f) 
for early 
heat release

temperature 
stratification 
from heat loss

evaporative 
cooling
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FIGURE 4. A comparison of ignition delays calculated using the de-
tailed model (“det”), the skeletal model without NOx (“sk149”) and the
final skeletal model with NOx (“sk149+NOx”).
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FIGURE 5. A comparison of laminar flame speeds calculated using
the skeletal model without NOx (“sk149”) and the final skeletal model
with NOx (“sk149+NOx”).

negligible impact on 0D and 1D calculations at the selected con-
ditions. However, NOx chemistry can be important under prac-
tical engine conditions, as will be investigated in the following
section.

4. RESULTS AND DISCUSSION
4.1 Model Performance

The proposed modeling approach is first validated in this
section. Table 4 shows the comparison of key engine perfor-

TABLE 4. Predicted and measured mean combustion characteristics.
Quantity Pmax

⇤ IMEPg⇤ CA10 CA50 CA90

Experiment 3.93 0.446 -8.04 3.54 22.3

CFD 4.08 0.497 -14.1 2.22 21.4
⇤Unit: MPa.

Metal data (13 cycles)

b) 

a) 

FIGURE 6. Predicted a) pressure and b) apparent heat release rate
profiles compared with experimental values. Individual experimental
cycles, mean experimental values, and numerical cycles are shown in
gray, black, and red, respectively.

mance parameters, including peak cylinder pressure (Pmax), gross
indicated mean effective pressure (IMEPg), CA10, CA50, and
CA90, obtained from simulations and experimental measure-
ments. Predicted values overall agree well with measured values.
A slightly earlier combustion phasing (CA10) predicted by sim-
ulation is possibly due to the use of a simplified ignition model
(a spherical energy source at the center of the spark gap) during

5 © 2019 by ASME

sequential 
auto-ignition

in end gas
Multimode
SACI Engine

C. Xu, et al., ICEF2019-7265.
also see FT070

HPF = high performance fuel
𝑌!"!# =mass fraction formaldehyde 

AHRR = Apparent Heat Release Rate [Joules per crank angle degree]
SACI = Spark Assisted Compression Ignition (M. Sjoberg experiment)
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max
!

LoadRange(𝑥)

s.t. (
"#$

%
𝑥" = 1

80 ≤ RON 𝑥 ≤ 98.5

𝑥" ∈ 0,1 , 𝑖 = 1,… , 𝑛

Formulate a constrained optimization problem

Objective function, alt. Robustness

𝑥! are fuel components

Constraint on desired Research 
Octane Number (RON)
𝑥! are in mol fractions

Approach Task G.4.LBNL: efficient search for better fuels guided by 
adaptive surrogate models
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!

LoadRange(𝑥)
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%
𝑥" = 1

80 ≤ RON 𝑥 ≤ 98.5

𝑥" ∈ 0,1 , 𝑖 = 1,… , 𝑛

LLNL’s zero-RK chemistry solver 
(~144 sec per 𝒙)

Formulate a constrained optimization problem

Approach Task G.4.LBNL: efficient search for better fuels guided by 
adaptive surrogate models
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max
!

LoadRange(𝑥)

s.t. (
"#$

%
𝑥" = 1

80 ≤ RON 𝑥 ≤ 98.5

𝑥" ∈ 0,1 , 𝑖 = 1,… , 𝑛

LLNL’s zero-RK chemistry solver 
(~144 sec per 𝒙)

LLNL’s neural network (~7 sec per 𝒙)

Formulate a constrained optimization problem

Approach Task G.4.LBNL: efficient search for better fuels guided by 
adaptive surrogate models

Fuel
RON
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max
!

LoadRange(𝑥)

s.t. (
"#$

%
𝑥" = 1

80 ≤ RON 𝑥 ≤ 98.5

𝑥" ∈ 0,1 , 𝑖 = 1,… , 𝑛

LLNL’s zero-RK chemistry solver 
(~144 sec per 𝒙)

LLNL’s neural network (~7 sec per 𝒙)

Approximate objective and 
constraint with a Gaussian 
process surrogate model

Formulate a constrained optimization problem

Takeaways (co-optima goal):
Gaussian process is 

computationally cheap to 
build and evaluate and will 

guide the iterative co-
optimization

Approach Task G.4.LBNL: efficient search for better fuels guided by 
adaptive surrogate models
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Approach Task G.2.21: Reinforcement & Transfer learning lead to 
significant savings in development of engine control strategies
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Thousands of 0D calculations
teach the controller about
basic thermodynamics and the
connection to the engine cycle

Hundreds of 2D simulations with
ECP combustion code teach the
controller about mixing and finite
rate chemistry

Tens of 3D simulations with ECP
combustion code refine the control
strategy for coupling of fuel
injection and mixture preparation

Incremental training of Artificial Intelligence (AI) control with 
progressively more expensive simulations

Data driven models from highest fidelity simulations improve high throughput models

2020 AMR

~1 hour ~12 hours ~48 hours

ECP = Exascale Computing Project
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G.5.3: Multi-zone engine model extended in Zero-RK to capture fuel 
chemistry impact on Co-Optima engines 2020 AMR accomplishment (LLNL)

‐10,7,9,20, new results

ɸ

-10 CA ATDC 7 CA ATDC 9 CA ATDC 20 CA ATDC

Mixed-mode cycle

Deflagration-only cycle

FIGURE 7. Evolution of deflagrative flame fronts (blue) and auto-ignition fronts (red) in a selected deflagration-only (top) and a selected mixed-mode
cycle (bottom), along with the distribution of equivalence ratio (f ) on a x� z plane cutting through the center of the spark gap. Blue and red isosurfaces
represent deflagrative and auto-ignitive fronts, respectively. Deflagrative fronts are identified by G = 0, while auto-ignitive fronts are identified by
YH2O/YH2O

eq = 70% in the end gas, i.e., the region where G < 0.

the energizing stage. However, the computational cost can be
significantly reduced with this simplified ignition model.

Figure 6 shows the pressure and apparent heat release rate
(AHRR) traces obtained from experiment (500 cycles) and sim-
ulation (13 cycles). Good agreement is observed between sim-
ulation and experimental data, with the predicted mean pressure
being slightly higher than the measured mean pressure. In ad-
dition, moderate level of, but not full range of CCV is cap-
tured by CFD. This is because unsteady RANS models solve
time-averaged Navier-Stokes equations, and therefore intrinsi-
cally predict lower CCV. Two types of combustion cycles are
observed in both experiment and simulation (Fig. 6b). The first
type of cycles features low in-cylinder pressure and heat release
rate, resulting in a single AHRR peak. This type of combustion
cycles is similar to those observed in conventional SI engines
(although the combustion duration is typically longer due to the
lean condition) and is referred to as deflagration-only cycles. The
other type of cycles shows higher in-cylinder pressure and heat
release rate, and exhibits two AHRR peaks. The first and second
peaks correspond to the early flame propagation and the subse-
quent end-gas auto-ignition processes, respectively. This type
of cycles is, therefore, referred to as mixed-mode cycles. Fig-
ure 7 shows the flame structure and dynamics of the two types
of combustion cycles, that is deflagration-only (top) and mixed-
mode cycles (bottom). In contrast to the deflagration-only cycle,
earlier flame propagation is seen for the mixed-mode cycle, and

FIGURE 8. Apparent heat release rate versus burned mass fraction,
obtained from experiment and simulation.

isolated ignition spots are formed (⇠7 CA) followed by volumet-
ric auto-ignition in the end gas. As end-gas auto-ignition rapidly
consumes the reactants ahead of the flame fronts (7-20 CA), tur-
bulent flame propagation due to deflagration is still present, al-
though much slower than auto-ignition.

The two types of combustion cycles can be distinguished
from each other in the mass burned space as shown in Fig. 8,

6 © 2019 by ASME

Takeaways (Co-Optima Goal):
New Zero-RK engine models trained with 
detailed CFD can evaluate the engine-
fuel effects of a virtual blend in minutes 
for Multimode and ACI operation. 

‐10,7,9,20, new results
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represent deflagrative and auto-ignitive fronts, respectively. Deflagrative fronts are identified by G = 0, while auto-ignitive fronts are identified by
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the energizing stage. However, the computational cost can be
significantly reduced with this simplified ignition model.

Figure 6 shows the pressure and apparent heat release rate
(AHRR) traces obtained from experiment (500 cycles) and sim-
ulation (13 cycles). Good agreement is observed between sim-
ulation and experimental data, with the predicted mean pressure
being slightly higher than the measured mean pressure. In ad-
dition, moderate level of, but not full range of CCV is cap-
tured by CFD. This is because unsteady RANS models solve
time-averaged Navier-Stokes equations, and therefore intrinsi-
cally predict lower CCV. Two types of combustion cycles are
observed in both experiment and simulation (Fig. 6b). The first
type of cycles features low in-cylinder pressure and heat release
rate, resulting in a single AHRR peak. This type of combustion
cycles is similar to those observed in conventional SI engines
(although the combustion duration is typically longer due to the
lean condition) and is referred to as deflagration-only cycles. The
other type of cycles shows higher in-cylinder pressure and heat
release rate, and exhibits two AHRR peaks. The first and second
peaks correspond to the early flame propagation and the subse-
quent end-gas auto-ignition processes, respectively. This type
of cycles is, therefore, referred to as mixed-mode cycles. Fig-
ure 7 shows the flame structure and dynamics of the two types
of combustion cycles, that is deflagration-only (top) and mixed-
mode cycles (bottom). In contrast to the deflagration-only cycle,
earlier flame propagation is seen for the mixed-mode cycle, and

FIGURE 8. Apparent heat release rate versus burned mass fraction,
obtained from experiment and simulation.

isolated ignition spots are formed (⇠7 CA) followed by volumet-
ric auto-ignition in the end gas. As end-gas auto-ignition rapidly
consumes the reactants ahead of the flame fronts (7-20 CA), tur-
bulent flame propagation due to deflagration is still present, al-
though much slower than auto-ignition.

The two types of combustion cycles can be distinguished
from each other in the mass burned space as shown in Fig. 8,

6 © 2019 by ASME

C. Xu, et al., ICEF2019-7265.
also see FT070 New Zero-RK Engine Model Features 

(FY20):
• flame propagation from experiment, CFD, or 

neural network (under development)
• modified heat transfer and species mixing 

correlations possible with CFD turbulent 
properties (e.g., kinetic energy, dissipation, etc)

• multiple wall temperatures to capture hot-spots
• evaporative charge cooling approximation
• linear scaling with species and zones

BLUE: flame 
propagation

zone 1: near wall

zone 20: hottest 
end-gas

RED: sequential 
auto-ignition

in end gas

ATDC = after top dead center
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Initial experimental design: 
select fuel composition vectors Fuel compositions satisfy by construction ∑"#$% 𝑥$ = 1

G.4.LBNL: Implementation of a new adaptive optimizer that exploits 
Gaussian process models for fuel search 2020 AMR accomplishment (LBNL)



152020 Vehicle Technologies Annual Merit Review

Initial experimental design: 
select fuel composition vectors

Evaluate RON 
constraint

Fuel compositions satisfy by construction ∑"#$% 𝑥$ = 1

Evaluate RON constraint for each fuel composition

2020 AMR accomplishment (LBNL)

G.4.LBNL: Implementation of a new adaptive optimizer that exploits 
Gaussian process models for fuel search
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Initial experimental design: 
select fuel composition vectors

Evaluate RON 
constraint

Evaluate 
LoadRange

Constraint satisfied?Yes No

Fuel compositions satisfy by construction ∑"#$% 𝑥$ = 1

Evaluate RON constraint for each fuel composition

• If 80 ≤ RON≤ 98.5 (constraint satisfied) evaluate 
LoadRange objective 

• If RON constraint violated, do not evaluate 
LoadRange objective

G.4.LBNL: Implementation of a new adaptive optimizer that exploits 
Gaussian process models for fuel search 2020 AMR accomplishment (LBNL)
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Initial experimental design: 
select fuel composition vectors

Evaluate RON 
constraint

Evaluate 
LoadRange

GP for 
LoadRange GP for RON

Constraint satisfied?Yes No

Fuel compositions satisfy by construction ∑"#$% 𝑥$ = 1

Evaluate RON constraint for each fuel composition

• If 80 ≤ RON≤ 98.5 (constraint satisfied) evaluate 
LoadRange objective 

• If RON constraint violated, do not evaluate 
LoadRange objective

Build Gaussian process model based on input-output 
data pairs for objective and constraint

G.4.LBNL: Implementation of a new adaptive optimizer that exploits 
Gaussian process models for fuel search 2020 AMR accomplishment (LBNL)
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Initial experimental design: 
select fuel composition vectors

Evaluate RON 
constraint

Evaluate 
LoadRange

GP for 
LoadRange GP for RON

Solve auxiliary optimization 
problem to select new fuel

Constraint satisfied?Yes No

Fuel compositions satisfy by construction ∑"#$% 𝑥$ = 1

Evaluate RON constraint for each fuel composition

• If 80 ≤ RON≤ 98.5 (constraint satisfied) evaluate 
LoadRange objective 

• If RON constraint violated, do not evaluate 
LoadRange objective

Build Gaussian process model based on input-output 
data pairs for objective and constraint

Use Gaussian process model to select new fuel for 
evaluation with RON constraint

G.4.LBNL: Implementation of a new adaptive optimizer that exploits 
Gaussian process models for fuel search 2020 AMR accomplishment (LBNL)
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Initial experimental design: 
select fuel composition vectors

Evaluate RON 
constraint

Evaluate 
LoadRange

GP for 
LoadRange GP for RON

Solve auxiliary optimization 
problem to select new fuel

Constraint satisfied?Yes No Takeaways:
• Implemented in python 3
• Verified on analytic test functions 
• Generalizable: easy to use for different problems

G.4.LBNL: Implementation of a new adaptive optimizer that exploits 
Gaussian process models for fuel search 2020 AMR accomplishment (LBNL)
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G.4.LBNL: Higher amounts of aromatics and olefins lead to best fuel 
performance in terms of load range

• Optimized load range over 9 fuel components 
• 5 trials (due to stochastic components)
• Start with 20 fuel compositions in initial design
• Iteratively use additional 280 fuel compositions

Takeaways:
• Optimal load range very similar across 

trials (within 1%) à method is robust
• Optimal fuel composition: always higher 

amount of aromatics and olefins, always 
low naphthenes

2020 AMR accomplishment (LBNL)

14.84

14.70

14.80

14.87

14.80

Load range

Convergence plot: higher is better 
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G.4.LBNL: Higher amounts of olefins lead to best fuel performance 
in terms of robustness

• Optimized robustness over 9 fuel components 
• 5 trials (due to stochastic components)
• Start with 20 fuel compositions in initial design
• Iteratively use additional 280 fuel compositions

239.97

239.02

241.87

235.92

240.40

Robustness

2020 AMR accomplishment (LBNL)

Takeaways: 
• Optimal robustness similar across 

trials (within 2%)
• Optimal fuel composition: always 

higher amount of olefins, always low / 
no naphthenes

Convergence plot: higher is better 
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G.2.21: Developed a Reinforcement Learning (RL) framework for 
hierarchy of engine models 2020 AMR accomplishment (NREL)

• Observable state space: crank angle, temperature, 
pressure, number of injections

• Reward: future investigation to include emissions
• Algorithm - Proximal Policy Optimization

Plug and play engine simulation models currently available:
• 0D engine models with equilibrium chemistry
• 0D engine models with finite rate chemistry

Takeaways: 
• Train agents on increasingly complex 

simulation models 
• High fidelity predictions at a fraction 

of the computing cost

Simulation models available in the future:
• PeleLM – First principle simulations of turbulence-

chemistry interactions in ACI engines, 2D
• CONVERGE – Complete ACI engine cycle 

simulations, 3D

Actor: choose a policy
Inject / Don’t inject

Critic: evaluate reward 
Work output

Environment
Engine simulation

Reward

St
at

e

TD error Action
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Training loss (low is good) Injection schedule Volume change under piston, 
must be >0

Takeaway: RL agent able to find injection strategy within 0.4% of 
the optimal injection strategy found through exhaustive search

Engine details
• Fuel is dodecane 
• Engine RPM - 1500
• Compression ratio – 9.2:1

RL agent training time on a single GPU
• Two-zone model - 1 hour
• 0D equilibrium chemistry – 1 hour
• 0D finite rate chemistry – 14 hours

Training loss: function of action 
feedback, predictions of future 
discounted rewards, and entropy 
loss (encourages exploration)

G.2.21: Injection strategy found by reinforcement learning is within 0.4% 
of the optimal injection strategy 2020 AMR accomplishment (NREL)

Lo
ss

Lo
ss

Episode

Two-zone
Equilibrium 
Reactor

Crank angle, 𝜃
# 

su
cc

es
sf

ul
 in

je
ct

io
ns

Crank angle, 𝜃

Cu
m

ul
at

iv
e 

re
w

ar
d

Two-zone
Equilibrium 
Reactor

Two-zone
Equilibrium 
Reactor



242020 Vehicle Technologies Annual Merit Review

G.2.21: Transfer Learning allows us to learn the optimal injection strategy 
20 times faster than with full simulation

Training loss vs training episode (low is good)
Reactor engine agent trained 
from scratch (~14 hours)
Two zone engine agent trained 
from scratch (~1 hour)
Reactor engine agent trained 
from two zone (~40min)

2020 AMR accomplishment (NREL)

Takeaway:
Transfer learning from low-fidelity to 
high-fidelity model enables learning 
optimal injection strategy 20 times 
faster à significant savings in 
compute time

Bump comes learning 
pre-TDC injection

Lo
ss
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Responses to Previous Year Reviewers’ Comments: Approach

1. “The reviewer found the approach worthwhile to develop a “middle model” to explore several fuel compositions
using detailed kinetics while managing computational cost. Similar to other LLNL tools, the reviewer asked
whether these modeling tools will be available for download by the wider community similar to the
announcement for Zero-order Reaction Kinetics (Zero-RK).”
• Answer: The Zero-RK library is available to the public under a BSD 3-Clause license at

https://github.com/LLNL/zero-rk. When new applications or models have been validated, they must pass an
internal security review, and then are added to the public git repository. We are still processing a number of
models for release. We encourage the community to contact us if they are interested in a specific model, so
that we can prioritize its review and public release.

2. “The reviewer commented that [developing a “middle model”] is the most appropriate approach to design the fuel
screening tool, assuming the surrogate fuel models are accurate enough. The use of high performance
computing is a great idea for this highly parallelable problem. The reviewer also suggested that one potential
improvement is to utilize CFD simulation results to better interpolate what the project team has learned.”
• Answer: This is the direction we are pursuing for Tasks 5.3(a) and (b). We recognize there are a number of

physical processes that are well-captured by CFD but cannot simply map to a single reactor approximation.
To this end, we are building Zero-RK models that can transfer flame propagation, charge stratification,
evaporation, and turbulent mixing rates measured from experiments and CFD into a couple multizone
model. This enables the fuel chemistry affects to be modeled with a more accurate representation of the
charge evolution.

https://github.com/LLNL/zero-rk


262020 Vehicle Technologies Annual Merit Review

Collaboration and Coordination with Other Institutions

Within and outside the Co-Optima program
• LBNL & LLNL: zero-RK simulation model developed at LLNL (McNenly, Lapointe) used in LBNL optimization
• LBNL & LLNL: Neural network for predicting RON developed at LLNL (Whitesides) used in LBNL optimization
• LBNL & LLNL: Optimizations on Livermore Compute Facilities
• LBNL & ANL: optimize parameters in CFD simulations – 3Q20
• NREL &LLNL: NREL use improved multizone model from LLNL in reinforcement learning framework – future 
• LBNL & LLNL: accelerate LLNL multi-zone model optimization with surrogate– future 
• Sandia: provide fuels to Magnus Sjoberg for testing
• Penn State & LLNL: Accelerated flame solver applied to YSI experiments - 2,800 species Co-Optima gasoline/HPF 

surrogate runs in 20 seconds (16 CPUs) - under review: S. Lapointe, et al., Combust. Flame, 2020; H. Kwon, et al., 
Fuel, 2020. 

• LSU & LLNL: microliter fuels tester
• ANL & LLNL: virtual fuel blends to evaluate the composition sensitivity and the Central Fuel Hypothesis in 

detailed engine CFD models
• ANL & LLNL: detailed CFD simulations provided to train multizone evaporation, mixing, and heat loss models
• SNL & LLNL/LBNL: validate kinetics-based engine models on Co-Optima engine data
• SNL & LLNL/LBNL: recommend fuel blends showing co-optimization potential for multi-mode and ACI 

engine validation.
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Remaining Challenges and Barriers

• Getting access to licensed simulation models requires compute accounts at different organizations

• Further narrow down the best fuels by decreasing RON ranges – makes optimization a lot more 
difficult

• Identifying the dependency between critical chemical pathways and functional groups and engine 
performance

• Fuel-Engine experiments and high-fidelity simulations cannot generate enough data to discover 
hidden fuel properties using unsupervised learning (data mining)

• Creating a framework to fairly compare the benefits of different mixed-mode strategies and fuel 
combinations.
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Proposed Future Research 

LBNL: 
• FY20: Parameter optimization for ANL’s CFD simulations
• FY21: True co-optimization of fuels and engine operation: use LLNL zero-RK model 
• FY21: Simultaneously maximize engine performance and minimize soot
• FY21: Tighten RON constraints in performance optimization: to narrow down feasible fuels

Any proposed future work is subject to change based on funding levels

LLNL: 
• FY20: Supercomputer search for virtual fuel blends with the new multizone engine models to maximize 

operating range of SACI and ACI with a fixed octane rating; and recommend blends for Co-Optima testing
• FY21: Use unsupervised learning to uncover hidden correlations between simulated chemistry properties and 

the multizone engine models over a large database of virtual fuels.

NREL:
• FY20: Extend transfer learning: 0D à simplified 2D direct numerical simulation
• FY21: LLNL’s multizone stochastic reactor model as additional engine model for RL/TL framework
• FY21: RL to design a control strategy for engine simulations in CONVERGE
• FY21: RL integrates data from PeleLM/CONVERGE during engine simulation and trains on-the-fly
• FY21: Comparison of optimal injection strategies for diesel surrogate & co-optima blend
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Summary: We integrated new physics in zero-RK, enabled efficient fuel 
search, and enabled optimal engine operation

Takeaways LBNL:
Gaussian process based optimizer 
leads to robust solutions and enables us 
to find optimal fuel compositions faster

Takeaways NREL:
Transfer learning from low-fidelity to high-
fidelity model enables optimal engine 
operation at fraction of compute cost

Lo
ss

Takeaways LLNL: 
Extended Zero-RK multi-zone engine 
model includes new physics, high 
level of agreement with existing 
simulations, and significant speed up
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Technical Back-Up Slides
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G.4.LBNL: Optimal fuel compositions that maximize load and robustness, 
respectively

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5

0.005 0.265 0.290 0.233 0.098
0.397 0.109 0.001 0.000 0.140
0.000 0.000 0.002 0.122 0.000
0.000 0.000 0.195 0.083 0.172
0.000 0.205 0.145 0.155 0.160
0.255 0.004 0.001 0.000 0.000
0.050 0.000 0.000 0.000 0.003
0.294 0.399 0.362 0.407 0.426
0.000 0.018 0.003 0.000 0.000
14.84 14.87 14.80 14.70 14.80

2020 AMR accomplishment (LBNL)

AromaticsIso-paraffinsParaffins Olefins

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5

0.031 0.058 0.000 0.132 0.053
0.028 0.155 0.007 0.000 0.000
0.000 0.083 0.000 0.000 0.000
0.027 0.104 0.000 0.000 0.007
0.089 0.087 0.032 0.000 0.094
0.024 0.031 0.056 0.000 0.048
0.094 0.130 0.143 0.285 0.061
0.706 0.352 0.761 0.583 0.736
0.000 0.000 0.000 0.000 0.000

239.97 235.92 241.87 239.02 240.40

Naphthenes

Species

toluene
trimethylbenzene
iso-octane
iso-pentane
n-heptane
n-pentane
1-hexene
di-isobutylene
cyclopentane
Optimal value

Maximize load range Maximize robustness

Bold: species with >10% 
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G.2.21: Reinforcement Learning (RL) framework details for hierarchy of 
engine models 2020 AMR accomplishment (NREL)

• Deep reinforcement learning (DRL) uses deep neural networks to 
construct an optimal strategy for maximizing reward by exploring 
environment

• Leverages well-known libraries such as Keras and stable-
baselines

• Training is performed on GPUs – Eagle supercomputer at NREL

Actor: choose a policy
Inject / Don’t inject

Critic: evaluate reward 
Work output

Environment
Engine simulation

Reward

St
at

e

TD error Action

• Implementation of RL framework integration
• Engine models designed as standalone modules – enable 

plug-play operation with other RL libraries
• Work in progress to extend this architecture to other engine 

models such as PeleC/PeleLM & CONVERGE
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2020 AMR accomplishment (NREL)

G.2.21: Performed 2D direct numerical simulation to construct a simplified 
engine model to study reactivity stratification

Five snapshots of the instantaneous temperature

• Goal: investigate reactivity stratification introduced by multiple fuels and injection timings
• Turbulent flow field with dodecane injection in premixed methane-air mixture
• Complex finite rate chemistry
• Ongoing: Couple with RL framework to discover optimal combustion strategies

Initial fuel 
injection

Start of 
ignition

Secondary 
methane 
injection

Peak volume 
average heat 
release rate

Peak 
average 

temperature

Temperatures 
from 300 K (black) 
to 3000 K (white).


